AMPO Association of Metropolitan Planning Organizations

AMPO Research Efforts and MPO Emerging Technology Activities

BALTIMORE REGIONAL TRANSPORTATION BOARD

Tuesday, July 24th, 2018

9:00 – 11:00 A.M.

Bill Keyrouze Technical Programs Director, AMPO

About AMPO

AMPO is a nonprofit, membership organization established in 1994 to serve the needs and interests of Metropolitan Planning Organizations (MPOs).

AMPO offers its member MPOs technical assistance and training, conferences and workshops, legislative and rulemaking updates, newsletters and communications, research, a forum for transportation policy development and coalition building, and a variety of other services.

Board of Directors - Leadership

President

Craig Lyon, Coordinator, Anchorage Metropolitan Area Transportation Solutions (Anchorage, Alaska)

Vice-President

Ashby Johnson, Executive Director, Capital Area Metropolitan Planning Organization (Austin, Texas)

Treasurer

Todd Lang, Director of Transportation Planning, Baltimore Metropolitan Council (Baltimore, Maryland)

Secretary

Amy Cummings, Director of Planning Services, Regional Transportation Commission of Washoe County (Reno, Nevada)

Board of Directors - Members

- R. Todd Ashby, Executive Director, Des Moines Area MPO (Des Moines, Iowa)
- Ron Chicka, Director, Duluth-Superior Metropolitan Interstate Council (Duluth, Minnesota | Superior, Wisconsin)
- Honorable Elaine Clegg, Councilmember, City of Boise, Idaho
- Greg Stuart, Executive Director, Broward Metropolitan Planning Organization (Ft. Lauderdale, Florida)
- David Wessel, Manager, Flagstaff MPO (Flagstaff, Arizona)

AMPO Standing Committees

- Policy Committee
 - -20 voting members; 10 alternate members
- Technical Committee
 - -20 voting members; 10 alternate members
 - -Research Topics Subcommittee
 - -Annual Conference Proposal Review
- Joint Committee Efforts
 - Freight
 - Ad-Hoc Reauthorization Priorities
 - MAP-21 Rulemaking Comments

- 2018 AMPO Annual Conference
 September 25th 28th | San Antonio, TX
- 2018 Connected & Automated Vehicle Planning Workshop

November 14th – 15th | Denver, CO

• 2019 AMPO Planning Tools & Training Symposium May 7th – 9th | Minneapolis, MN

2019 AMPO Annual Conference

October 22nd – 25th | Baltimore, MD

AMPO Technical Working Groups

AMPO facilitates several technical working groups focused on transportation planning topic areas that are required and/or of interest to MPOs.

- Air Quality
- Connected & Automated Vehicle Planning
- Freight (coming soon)
- GIS (coming soon)
- Performance-based Planning & Programming
- Public Involvement & Environmental Justice
- Travel Modeling

The working group serves as a mechanism to:

- Build technical, institutional, and policy capacity
- Identify and leverage C/AV benefits
- Address knowledge gaps
- Advance C/AV in planning
- Support USDOT, State DOT, MPO, and Stakeholder C/AV efforts

Working Group Participants

- 15-20 Core Members
- Diverse in MPO-size and Geography
- Variety of backgrounds
 - -Policy
 - -Operations
 - Modeling
 - -ITS

Working Group Activities:

Four Working Group Meetings

- First Meeting: April 2017 (MPO focus)
- Second Meeting: July/August 2017 (State DOT/MPO focus)
- Third Meeting: November 2017 (Federal/State DOT/MPO focus)
- Fourth Meeting: March 2018 (Private sector focus)

National Framework and Workshop

November 2018

MTC/MAG – Understanding Uncertainties

Literature Review Ranges for Key Variables

Source: Future Mobility Research Program, Metropolitan Transportation Commission, October 2017

Manufacturer Commitments

Manufacturer	2016	2017	2018	2019	2020-25	2025-30	2030-35	2035-40	2040+
	2		3		3+	4/5			
Ö	2				4/5				
Fired				2	4/5				
HONDA	2				3				3-4
KIA					3		4/5		
Mercedes-Benz	2								
NISSAN	2		3		4/5				
TESLA	2		4/5						
VOLVO	2	4/5							

SAE Levels of Automation

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation -

SEMCOG "Pulse of the Region" Survey

- Most respondents (43%) believe fully-autonomous self-driving cars will be available to the public in the next 6-10 years (20% within next 5 years)
- 43% described their level of comfort riding in a fullyautonomous, self-driving car as "Apprehensive, but would give it a try"
- 54% of respondents are willing to wait for prices to lower before purchasing a vehicle with semiautonomous features

NCHRP Planning Snapshot #11

How have elected officials, decision makers, or agency executives responded to C/AV issues in your state or region?

- Supportive
- Too Early to Tell
- Uninformed but Curious

Source: http://www.planningsnapshots.camsys.com/

NCHRP Planning Snapshot #11

How would you best describe your agency's level of engagement with connected and autonomous vehicles?

- Passively Engaged 37%
- Actively Engaged 33%
- Early Adopter 7%
 - Leader 14%

Source: http://www.planningsnapshots.camsys.com/

16

Emerging Transportation Technology Strategic Plan for the St. Louis Region

- New technologies may fundamentally alter the way people travel in the future, with potentially dramatic impacts on safety, mobility, and system performance over the next 20-30 years.
- The pace of technology adoption is quickening.
- The St. Louis Region needs to better prepare for the future in its regional transportation planning and investment decision-making.

Source: Emerging Transportation Technology Strategic Plan for the St. Louis Region, June 2017

Emerging Transportation Technology Strategic Plan for the St. Louis Region

Source: Emerging Transportation Technology Strategic Plan for the St. Louis Region, June 2017

Emerging Transportation Technology Strategic Plan for the St. Louis Region

Analytics • Establish a Technology Advisory Committee • Establish a Technology Advisory Committee • Work with loca • Work with loca • Work with loca	
	l universities to
 analytics capabilities Develop a robust data collection plan, leveraging new forms of data to support performance measures Enhance modeling to address emerging transportation technology as a factor when prioritizing projects for the regional transportation plan (RTP) Update the regional ITS Architecture and Deployment Plan Develop a shared vision for technology to recommend regional strategies Develop a shared vision for technology to recommend regional strategies Develop a shared vision for technology to recommend regional strategies Conduct scenario planning to better understand alternative futures and to support more informed analyses of investment priorities Include considerations related to emerging transportation technology as a factor when prioritizing projects for the regional transportation plan (RTP) Update the regional ITS Architecture and Deployment Plan 	er-to-peer d facilitate ssions on topics c-private thanges to olicies, and and analytics ssments of local awareness and irding a periodic basis
Update the Congestion Management Process and ensure that other regional planning products integrate emerging transportation technology	

Source: Emerging Transportation Technology Strategic Plan for the St. Louis Region, June 2017

FTA/ARC – Shared Mobility and Technology Report

Source: FTA, Shared Use Mobility, Transportation Technology and Intercity Transit Services, June 2018

DVRPC – Setting Context

FIGURE 19: THE FOUR INDUSTRIAL REVOLUTIONS

THE DIGITAL REVOLUTION

Source: DVRPC, 2017. Adapted from World Economic Forum.

Source: Delaware Valley Regional Planning Commission, Connections 2045, December 2017

DVRPC Connections 2045 – Potential Impacts

COULD DECREASE DUE TO	IMPLICATION	COULD INCREASE DUE TO		
Vehicle sharing, higher vehicle costs	Vehicle Ownership	Smaller, lighter-weight vehicles lower cost, new types of vehicles		
Increased travel willingness / better use of in-vehicle time	Land Use Density	Network effects, shared & transit vehicles, less parking		
Vehicle sharing, denser development	VMT / Trips	Lower operating costs, zero-occupant trips, mode shift, expanded mobility for non-drivers, increased travel willingness		
Follows all road rules / defensive driving	Road Capacity / Speed	Reduced headways, smoother traffic flow, shorter signal lag times, fewer crashes, and real-time route optimization		
Machine precision	Crashes	Hacking, complex human-machine interactions		
Low-emission vehicles, right-sized vehicles, eco-driving	Air and Noise Pollution	More travel, larger vehicles		
Vehicles avoid deficiencies, smoother traffic flow	Pavement Distress	Platooning / closer vehicle spacing, increased VMT		
AI (deep learning) displaces workers	Jobs	Technology creates more new high-skill jobs than the lower-skill ones it disrupts		

Source: DVRPC, 2017. Adapted from Bryant Walker Smith, How Governments Can Promote Automated Driving, New Mexico Law Review, forthcoming, March 17, 2016, https://papers.ssrn.com/sol3/papers. cfm?abstract_id=2749375; and Johanna Zmud, Ginger Goodin, Maarit Moran, Nidhi Kalra, and Eric Thorn, Advancing Automated and Connected Vehicles: Policy and Planning Strategies for State and Local Transportation Agencies, National Cooperative Highway Research Program; Transportation Research Board, National Academies of Sciences, Engineering, and Medicine, 2017, http://nap.edu/24872.

Source: Delaware Valley Regional Planning Commission, Connections 2045, December 2017

MTC/MAG – Potential Benefits/Risks

A Unique Opportunity . . .

Repurposed Parking Space for Housing Public Space

Safer Streets Improved User Experience Efficient Network Management

Higher Efficiency Transit Lower Operating Costs

Increased VMT Empty Vehicle Circulation Fight for the Market

Urban Sprawl Higher Congestion Longer Travel Times

Cyber Attacks Privacy Concerns

Declined in Transit Use Inequity

Source: Future Mobility Research Program, Metropolitan Transportation Commission, October 2017

RTC Southern Nevada – Planning Process

Technology-Related Planning Needs	RTC Action
Incorporate emerging technologies into goals	Included in Access 2040
Establish policies & plans with consideration for the future	Initiated in Access 2040
Develop scenario model with Emerging Technologies capabilities	Model development underway (2017)
Assess high-capacity transit impacts and requirements	High Capacity Transit Plan (2017-2018)
Evaluate road capacity needs	Emerging Technologies Planning Study (2017)
Forecast financial implications	Emerging Technologies Planning Study (2017)
Identify trigger points for longer-term actions	Emerging Technologies Planning Study (2017)
Evaluate and test use of AV paratransit vehicles	1-5 years
Update roadway policies and infrastructure to leverage the VMT impact	1-5 years
Develop new predictive models for pavement maintenance	1-5 years
Assess impacts on low-ridership transit routes	1-5 years
Provide analysis of transportation and land use impacts to support stakeholders	1-5 years

Source: Regional Transportation Commission of Southern Nevada, Access 2040, February 2017

How will automated vehicles arrive?

Source: Maricopa Association of Government, November, 2017

MAG – Cone of Uncertainty

Scenario Planning CONNECTED VEHICLE/AUTONOMOUS VEHICLE FUTURE

Source: Maricopa Association of Government, November, 2017

FHWA 2035 CV/AV Scenarios

Source: Scenario Planning for Connected and Automated Vehicles, FHWA Office of Policy, February, 2018

Identified Strategies:

- Maintain an environment that fosters innovation
- Establish a desired vision of the future transportation system with C/AVs
- Based on the vision, identify actions (i.e., policies and investment decisions) within the metropolitan planning process and products to support the desired future

- Through scenario planning and exploratory modeling, understand plausible deployment scenarios and their range of implications and risks to the transportation system, specific modes, and the behavior of transportation
- Educate and inform MPO policy boards, other relevant decisions makers, and MPO stakeholders on C/AV status and critical issues
- Help ensure equity, safety, and traffic operations are maintained

- •Do not prematurely select a preferred technology (e.g., 5G vs. DSRC)
- •Expand MPO staff skills to include expertise in planning for and managing emerging technologies
- Make investment decisions the support both the current and future transportation system

- •To help address uncertainty, explore the future in incremental transitions (e.g. 5, 10, 15, and 20 horizon years)
 - This could be visualized as a cone of uncertainty with the narrowest part of the cone representing the present and the greatest overlap of scenarios. The height and width would represent time and uncertainty respectively

- Scenario planning may help narrow the cone
- Potential investment decisions could be identified as projects common to all or most of the cone or projects at the narrow end of the cone that support both the current and future transportation system
- Needs at the widest end of the cone could be thought of more generally by program type or corridor need (e.g., capacity improvements along a corridor within certain mileposts)

National Framework

- A framework to inform the transportation planning process and products
- Collection of resources and templates

Workshop

- The workshop will be used as an opportunity to gather feedback on the framework
- Breakout sessions will include:
 - Scenario testing and Modeling
 - Messaging
 - MPO Planning Process and Products

- The MPO role is critical to the nation as 80.7% of the United States population is urban and overall the nation's transportation network moves 54 million tons of freight valued at more than \$48 billion each day.
- MPOs are stewards of the transportation system within urban areas. With their partner agencies, they serve as transportation system planners, managers, operators, and developers who shape the transportation system, maintain safety and equity, and move people and goods regardless of mode choice.

Planning Organizations

Connected & Automated Vehicle Planning

Source: United States Census Bureau Urbanized Areas and Urban Clusters 2010

• MPOs are leaders for their regions and must keep pace with, leverage, and support emerging technologies, like C/AV, and their potential to improve the transportation system while helping to ensure the safe deployment of these technologies with minimal disruptions or negative impacts to the transportation system and its users.

All of the whitepapers and meeting materials can be found on the AMPO website at www.ampo.org

Framework and related materials coming December 2018

bkeyrouze@ampo.org | 202.624.3683

Thank you!

