UAS Photogrammetry Stormwater Management Existing Conditions Survey

Background of the project.

Existing facility retrofit

- Subdivision built in the 1980's
- Existing quantity stormwater management via detention basin
- Drainage area approximately 38 acres with 12.5 acres impervious
- Seeking to retrofit the existing basin to manage Water Quality Volume, Channel Protection Volume, and Overbank Flood Protection Volume.
- "As-built" provided with RFP.

Project Scope

Perform topographic survey and verify as-built
Create base mapping with 1' contours
Existing condition orthoimage
Locate all Sanitary and Storm Sewer X,Y,Z
Deliverable:

- MicroStation V8i drawing
- Digital Terrain Model

Existing Conditions Survey

Provided the "As-Built"

- Upon Review it is a construction plan not and as-built plan.
- Changed from as-built verification to existing conditions survey.

Provide a datum as none are shown on the plan.

- NAD 83/2011 Horizontal
- NAVD 88 Vertical

Flight Planning

- 1. Can you fly the site.
- 2. What accuracy are we looking for.
 - a. What sensor should be used?
 - b. What altitude and speed?
 - c. Ground Control How much and how accurate?
- 3. What equipment? Drone and Sensor
- 4. What battery power is needed?

Establishing Ground Control

Perform Existing Conditions Survey

- Locate all sewer and storm drain structures
- Locate inverts
- Survey obscured areas
- Measure and sketch headwalls and riser structures
- ✤ PERFORM FLIGHTS
- Download and review imagery on site

Office processing

Download imagery
Select panel points
Select check shots
Select Parameters
Process and go home

Ground Control and Check Points

- Review each point to verify that they are reasonable.
- Review Root Mean Square Error (RMS)
- The Mean X,Y, or Z error helps to recognize systematic errors due to bad GCP acquisition.
- The Sigma error gives confidence intervals around the Mean error: 95.4% of the points of the project will have an error of </= +/-2σ
- The RMS error will take into account the systematic error. If Mean error=0, the RMS error will be equal to the Sigma Z error. The comparison of the RMS error and Sigma error indicates a systematic error.
- Of the 3 indicators, the RMS Error is the most representative of the error in the project since it takes into account both the mean error and the variance.

Oround Control Points

GCP Name	Accuracy XY/Z [US survey foot]	Error X [US survey foot]	Error Y [US survey foot]	Error Z [US survey foot]	Projection Error [pixel]	Verified/Marked
PP1 (3D)	0.020/ 0.020	0.010	-0.002	0.066	0.380	4/4
PP2 (3D)	0.020/ 0.020	0.006	0.000	-0.003	0.167	9/9
PP3 (3D)	0.020/ 0.020	-0.008	0.003	-0.003	0.872	8/8
PP5 (3D)	0.020/ 0.020	-0.007	-0.004	-0.002	0.459	5/6
Mean [US survey foot]		0.000128	-0.000785	0.014446		
Sigma [US survey foot]		0.008100	0.002790	0.029844		
RMS Error [US survey foot]		0.008101	0.002898	0.033156		

of 12 shock points have been labeled as inco

0 out of 13 check points have been labeled as inaccurate.								
Check Point Name	Accuracy XY/Z [US survey foot]	Error X [US survey foot]	Error Y [US survey foot]	Error Z [US survey foot]	Projection Error [pixel]	Verified/Marked		
1007		0.0171	0.0191	-0.0316	1.4124	10/10		
1009		-0.0142	0.0161	0.0463	0.6813	7/7		
1010		0.0270	-0.0232	0.0644	0.6837	7/7		
1119		0.0135	0.0329	-0.0724	0.5919	8/8		
1599		-0.0160	-0.0037	0.1122	0.8722	9/9		
11466		-0.0030	-0.0060	0.1041	0.3378	5/5		
11467		0.0113	-0.0573	0.0527	0.3999	4/4		
11468		-0.0092	0.0025	-0.0445	0.4296	4/4		
11471		-0.0161	0.0338	0.0037	0.4955	3/3		
11472		0.0351	-0.0039	-0.0200	0.1688	4/4		
11473		0.0295	-0.0055	-0.1035	0.4805	3/3		
11475		0.0068	0.0070	0.0968	0.4139	6/6		
11477		-0.0251	0.0174	-0.0107	0.2802	4/4		

Mean [US survey foot]	0.004366	0.002240	0.015186	
Sigma [US survey foot]	0.018963	0.023290	0.066993	
RMS Error [US survey foot]	0.019459	0.023397	0.068693	

Cross Sectional Checks

Cross Sectional Check

Contour Comparison (Field vs. Photogrammetry)

West Slope of Pond

East Slope of Pond

LiDAR and Photogrammetry

Accuracy Standards - ASPRS Digital Data Delivery

- Vertical Data
 - "This data set was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a _____(cm) RMSE_z Vertical Accuracy Class. Actual Non-vegetated Vertical Accuracy was found to be RMSE_z = ____cm, equating to _____at 95% confidence level. Actual Vegetated Vertical Accuracy was not tested."
 - "This data set was produced to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 5 cm RMSE, Vertical Accuracy Class equating to NVA =+/- 9.8 cm at 95% confidence level and VVA =+/- 15 cm at the 95% percentile
- Horizontal Data
 - "This data set was **tested** to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a ____ (cm) RMSE_x / RMSE_y Horizontal Accuracy Class. Actual positional accuracy was found to be RMSE_x = ____ (cm) and RMSE_y = ____ cm which equates to +/- ____ at 95% confidence level."
 - "This data set was produced to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a <u>2.5</u> (cm) RMSE_x / RMSE_y Horizontal Accuracy Class which equates to +/ <u>6.1</u> cm at a 95% confidence level."

Note: DATA was produced based on flight testing. Tested would have required 20 check points.

Advantages of UAS on this project

Reality Capture
Less invasive (adjoining property mapping)
Accurate and current background imagery
Less time in the field

DISCUSSION

