UAS on the Leading Edge of Technology

December 4th, 2018

Matt Scassero Director, UAS Test Site mscasser@umd.edu

Let's talk...

- Technology vs requirements
- Platforms & ground control stations
- Sensors
- Communications
- Data processing
- Continuum of Capability Unmanned to AI
- Q&A

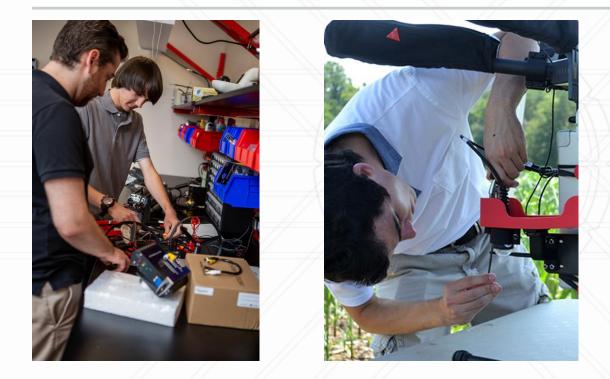
Who We Are

Research and operations group at the forefront of UAS rulemaking, commercialization, and national airspace integration.

Some of our research partners in government, academia, & industry

What can UAS do for public use cases?

- Speed
- Cost
- Convenience
- Safety
- Accuracy



What is it <u>really</u> all about? Requirements-based UAS R&D and operations

- What Do Industry/Government/Academia need to implement effective use cases?
- What Does the UAS User **need** to Enable Safe and Cost-Effective Applications?
- What Does FAA **need** to Support Integration Rulemaking?
- Solve the challenges
- Get and focus the resources
- *Fly!*

System Design & Integration

- System-ofsystems
- Payload integration
- Airspace Integration
- Pathway to data collection

System Design & Integration: Case Studies

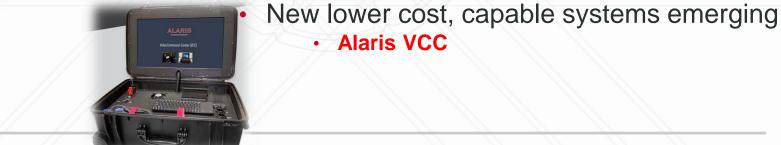
Payload integration NASA GOES-R Unique payload integration UMMC/UMB/UMD

Mesh network radios integration Navmar Applied Sciences Corp.

Systems - platforms

- COTS sUAS DJI, Yuneec, etc.
 - Inspire, Mavic Pro, Phantom 4, Matrice 210/600, Typhoon H, H520
 - Pros Cost (\$1K-\$3K...and up...), ease of use, sensors
 - Cons Offshore sourcing, geo fence, varying degrees of flexibility

- Custom and more flexible sUAS BFD, Latitude/L3, etc.
 Capability vs. Cost
- Larger UAS AeroVironment, Navmar, Insitu
 - Capability vs. Cost, Training, <u>Regulations</u>



Systems – controllers, displays

 All UAS come with integrated controller /display - "good"

- Supplied transmitters have limited feed connectivity
 Need to share picture to command centers, other resources, etc.
 - - Older systems to do this elegantly >\$10K

Systems – sensors

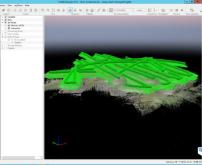
- Cameras EO
- Infrared (IR)
- LiDAR

Buyer/user beware – training required

i.e. LiDAR

	Fixed-Wing	Helicopter	Mobile	Terrestrial Leica C10, P20 & P40
LiDAR Sensors	1	1	2	C10 = 1 P20 = 3 P40 = 1
Cameras	Digital Imagery & Video	Digital Imagery & Video	Digital Imagery & Video	Digital Imagery for RGB Point Colorization
Laser Classification	3R (IEC 60825-1)	3R (IEC 60825-1)	IEC/CDRH Class 1	C10 = 3R (IEC 60825-1) P20 = 2 (IEC 60825-1) P40 = 1 (IEC 60825)
Scanner Field of View	45° – 60°	45° – 60°	360° (horiz)	360° (horiz)
System Range	5780'	5780'	5' to 600' Radius	C10 = 975' radius P20 = 400' radius P40 = 900'+ radius
Laser Measurement Rate	400K points per second	400K points per second	Up to 1M points per second	C10 = 50K points per second P20/40 = Up to 1M points per second
Relative Accuracy of Laser	0.065'	0.065'	0.023'	0.01'
Absolute Accuracy	Project Driven - 0.25 to 1' - GPS Quality - Post-processing Techniques - Project Targeting	Project Driven - 0.1 to 0.5' - GPS Quality - Post-processing Techniques - Project Targeting	Project Driven - 0.06' at <50' to sensor - GPS Quality - Post-processing Techniques - Project Targeting	Project Driven - Primary Control - Post-processing Techniques - Project Targeting
Point Density	Up to 15 points per meter.	Up to 70 points per meter, depending on project needs.	Up to 3,000 points per meter, depending on project needs.	Completely user defined based on project needs.

Systems – communications


- Command and control (C2) and data
- GPS dependent
 - RTK systems (DJI Matrice series)
- Radio frequency (RF) is the standard now
 - Radio line-of-sight
 - Spectrum challenges (power, frequency, etc.)
- Future
 - Mesh network radios
 - Laser directional communications low probability of intercept/detection, power
 - 4G / 5G cell networks
 - Satellite
 - Flow navigation
- Cybersecurity

Systems – data processing

- Drone deploy simplistic, cheap, easy to use, limited 3D mapping
- A gap stitching for incident reconstruction
 - **Pix4D** very capable, \$\$\$, difficult to use/learning curve
- Need to be able to see what you have before you leave the area, pre-analysis of pictures

- Onboard processing / algorithms
 - Future work, huge gains to be made
- Imagery/data gathering
 - Need to have a digital multimedia plan
 - Handling, storage, control

Continuum of capability

- Unmanned automated autonomy Al
- Truly realize benefits of unmanned systems
- Based on training, understanding of requirements and *trust*

For public use - emerging trends

- Tethered units
 - Power and data = endurance
 - Still an aircraft
 - Cost
- BVLOS / Flight over Humans
- Larger than small UAS
- Improved sensors
- Improved post-flight processing
- Your imagination...

...but there are limits...

- Training
- Cost versus revenue
- Accuracy versus expectation

Is it the right tool for your job? What are <u>you</u> an expert at? Who do you partner with?

takeaways

- Requirement-based R&D
- Strengthening relationships
- Exercising leadership roles

mscasser@umd.edu www.uas-test.umd.edu UMDUASTest

FEARLESS IDEAS

21

UAS TEST SITE

