

One Maryland One Centerline & the Sidewalk Data Collaboration

BRTB BICYCLE AND PEDESTRIAN ADVISORY GROUP 7-16-25

The Maryland Sidewalk Data Collaboration

Comprised of stakeholders representing agencies and jurisdictions across Maryland:

- Allegany County
- Anne Arundel County
- Baltimore City Department of Transportation
- Baltimore County
- Baltimore Metropolitan Council
- Charles County
- Easton
- Howard County
- Maryland Department of
 Transportation
- Metropolitan Washington Council of Governments
- Montgomery County
- Prince George's County
- State Highway Administration
- University of Washington
- Wicomico County

- Led by the Maryland Department of Transportation (MDOT) Environment and Sustainable Transportation Program
- Established in July 2023 to address lack of data on sidewalks

- Promote populating the Maryland Sidewalk Data Initiative's schema as an investment in:
 - A full understanding of **existing pedestrian infrastructure**
 - A framework for analyses aimed at identifying critical gaps in pedestrian networks, based on the people and destinations they separate

Addressing inequities

- Robust data promotes the efficient use of limited funding for improvements
 - ADA compliance & Accessibility Analysis
 - Regional and Community Planning
 - Complete Streets Initiatives
 - Context Driven Design
 - Maryland Pedestrian Safety Action Plan (PSAP)
 - Public Transit Accessibility
 - Safe Routes to School (SRTS)
 - Transit Oriented Development (TOD)
 - Transportation Alternatives (TA)
 - Vision Zero Planning

STATE HIGHWAY ADMINISTRATION

One Maryland One Centerline (OMOC) Program Overview

- One Maryland One Centerline/OMOC is a collaborative effort between federal, state, and local entities to create an authoritative, seamless, statewide roadway dataset that meets the needs of all stakeholders.
- Benefits of OMOC:
 - Authoritative Data: Leverages trusted centerline data from state and local partners.
 - Collaborative Maintenance: Data is maintained collaboratively based on authoritative designations.
 - **Timely Updates**: Data maintenance occurs frequently (daily/weekly/monthly) rather than annually.
 - **Optimized Data**: Incorporates the best components from state and local datasets.
 - Local LRS Support: Provides a Linear Referencing System (LRS) for local governments to effectively manage centerline data event types.
 - Asset Information Sharing: Facilitates sharing of roadway asset information between state and local jurisdictions, as well as neighboring localities.
 - **Centralized Data Access**: Offers a single source for authoritative data-driven decisionmaking.
 - Automated Notifications: Receive alerts about potential data event changes triggered by centerline modifications.

One Maryland One Centerline (OMOC) Data Events

- 150+ Data Event Types
- Examples of Pedestrian and Bicycle Events
 - AADT
 - ADA
 - Bicycle Eligible
 - Bicycle Facility Type
 - Bicycle Level of Traffic Stress (LTS)
 - Bicycle Pocket Lanes
 - Bicycle Routes
 - Bicycle Side Path
 - Bicycle Traffic Flow
 - Bicycle Vertical Separation
 - Crash
 - Crosswalks
 - Curb
 - Dangerous Curves
 - Functional Class
 - Intersections
 - Lane Width

- Line Striping
- Maintenance Authority
- MTA Bus Stops
- MTA Bus Routes
- Park n Rides
- Pavement Type
- Prohibited Routes
- Railroad Crossings
- Scenic Byways
- Structures
- MDOT SHA Roadway Projects
- Shared Use Paths
- Shoulder Present
- Sidewalks
- Signals
- Speed Limits
- Traffic Barriers

How can I use Sidewalk Event Editor data?

- Robust sidewalk data is important for analyses and part of why this tool exists!
- Solutions range from customizable analysis you can curate to templates that the OMOC team can give you
- Reach out to <u>gis@mdot.maryland.gov</u> to understand the various OMOC outputs you can use

But who can enter the sidewalk data?

- Any staff person, GIS is not required.
- Volunteer, High School or College Interns during the summer and academic school year.

But who will train and monitor their progress?

- SHA will schedule personalized training for any person entering sidewalk data.
- SHA will monitor the quality and progress of the data entry.

OMOC/Roads & Highways

Custom Outputs

- Segment Analyzer allows for the creation of reusable templates to create custom outputs.
- Web based program is accessible to all users.
- Outputs can be simple spreadsheets, database tables, or shapefiles.

MARYLAND DEPARTMEN

📕 Available Data Sources		<<
Transactional data	•	C
DEFAULT		≡
Layers and Tables		
× num G ▼	245 (bjects
ACCESS_PERMIT_LOC		⇒
NUMBER_LANE_LEFT		>
NUMBER_LANE_RIGHT		>
VNUMBER_THRU_LANES		>
OOS_STRUCTURES		>
ORE_PLAT		>
ROUTE_MODIFIERS		>
Event Layer Linear		>
OMOC_NETWORK		>
		>
° → A ×	\rightarrow \dot{Q}^{0}_{0}	(CSV)
Analysis Routes	Options	
GUUIDATE		

(Segment Analyzer, More - Hore - Help -

emplate: (NONE) lick to add description		010077000010 010077000010 010077000010 010077000010	96.2% 97.03 75.13 75.24 100.62		and a second
P Layer Analysis (5 lay	ers)				
MD_SIDEWALK Version: SDE.D	EFAULT				
Add Field + SIDEWALK_TYPE ×				↓ Union ↓	
+ SPEED_LIMIT Version: SDE.DE	FAULT				
Add Field + SPEED_LIMIT ×				d. Union d.	
FACILITY_TYPE Version: SDEL	DEFAULT				
Add Field + FACILITY_TYPE ×					
TRAFFIC_STATION Version: SI	DE.DEFAULT			♥ Union ♥	
Add Field + DESCRIPT ×					
• NUMBER_THRU_LANES Vers	ion: SDE.DEFAULT			↓ Union ↓	
Add Field + NUMBER_THRU_LANES	×				

Data Updates

MDOT SHA	13200
Prince Georges County	6600
Charles County	2200
Frederick County	1100
Easton	300
TCCSMD (Southern Maryland)	900
TSO Interns	2000

TOTAL

26,300 Sidewalks

Areas with Sidewalk Coverage

Case Studies

Illustrating the value of schema data

Purpose

Sidewalk Network Data

Analyses

Accessibility Measures

- Promote populating the Maryland Sidewalk Data Initiative's schema as an investment in:
 - A full understanding of existing pedestrian infrastructure
 - A framework for analyses aimed at identifying critical gaps in pedestrian networks, based on the people and destinations they separate

What Does this Look Like?

Metrorail Station Accessibility

- Are there missing commuter connections within one mile of the North Bethesda Metrorail station?
- Who would new infrastructure connect to highcapacity transit?

School Accessibility

- Are there gaps in the sidewalk network within a half mile of Rolling Terrace Elementary School?
- Who gains access if we close that gap?

Methodology

- 1. Aggregate sidewalk data:
 - Montgomery County
 - Prince George's County
 - OpenStreetMap
- 2. Add sidewalks to the OMOC network
- 3. Enrich authoritative data
- 4. Extract sidewalks from OMOC
- 5. Develop a routable network and analyze
- 6. Assign demographic data to network
 - American Community Survey 5-year Estimates (2022) were interpolated to hexagons

Metrorail Station accessibility

- Estimated access (existing):
 - Total population: 10,654

MARYLAND DEPARTMEN

- Commuting population: 4,111
- Non-white population: 5,349

Metrorail Station accessibility

- Estimated access (with potential connection between Nebel Street and Parklawn Drive):
 - Total population: 11,345 (+6%)
 - Commuting population: 4,389 (+7%)
 - Non-white population: 5,760 (+8%)

School accessibility

- Estimated access (existing):
 - Total population: 4,289
 - Youth population: 1,293

MARYLAND DEPARTMEN

– Non-white population: 3,697

School accessibility

- Estimated access (with potential sidewalk connecting to park trail):
 - Total population: 6,563 (+53%)
 - Youth population: 1,768 (+37%)

AND DEPARTMEN

Non-white population: 5,194 (+40%)

Implications

- This analysis exclusively considers **Tier 1** attributes:
 - No consideration for the adequacy of intersection crossing infrastructure
 - No consideration of obstructions
 - Sidewalks were requisite for access; no routing on roadways, regardless of their traffic levels/expected pedestrian comfort

Future Directions

- Pedestrian accessibility scoring to understand access to destinations
 - Index the degree to which residents can walk to transit, schools, grocery stores, etc. to facilitate comparisons across geographies
 - Facilitates the prioritization of improvements within areas based on equity and accessibility measures
- Pedestrian level of comfort analyses to understand the pedestrian experience
 - Allows for a holistic consideration of factors including vehicular speeds and volumes, adequacy of sidewalk infrastructure, land use, etc.

Thank you

Francine Waters

Project Manager Multimodal Transportation Project Specialist Office of Environment & Sustainable Transportation 410.865.1167 (office) <u>FWaters@mdot.maryland.gov</u>

Marshall Stevenson (Consultant)

OIT GIS Program Manager Maryland State Highway Administration 410.545.5531 (office) <u>MStevenson@mdot.maryland.gov</u>

John Beall

State and Local Systems Team Leader Office of Planning and Preliminary Engineering 410.545.8749 (office) jbeall@mdot.maryland.gov

Thanks to YOU!

American Planning Association Maryland Chapter

The Maryland Sidewalk Data Collaboration has won APA MD/MPCA's *Interjurisdictional Coordination Award*. This is a testament to your hard work, feedback, and continuing commitment to improve sidewalk data in Maryland.